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ABSTRACT This paper presents an agent-based modeling framework for affordance-based driving behav-
iors during the exit maneuver of driver agents in human-integrated transportation problems. We start our
ciscussien from one novel modeling framework based on the concept of affordance called the affordance-
based finite state automata (AFSA) model, which incorporates the human perception of resource availability
and action capability. Then, the agent-based simulation illustrates the validity of the AESA framework for
the highway-lane-driver system, Next, the comparative study between real driving data and agent-based
simulation ostputs is provided using the ransition diagram. Finally, we perform a statistical analysis and a
correlation study to analyze affordance-based driving behavior of driver agents. The simulation results show
that the AFSA model well represents the perception-based human actions and drivers’ characteristics, which
are cssential for the design viewpoint of control framework of human driver modeling, This paper is also
expected to benefit a designed control for autonomous/self-driving car in the future.

IMDEX TERMS Agent-based modeling, affordance, finite state automata, driving behavior, human-machine

interactions.

L INTRODUCTION

A Human-machine system is often regarded as a complex
one, in which the integration between the functionalities
of a human and the opportunities that the machine or the
environment presents to the human should be considered
simultaneously [1]. Onc challenging, popular application
arca of such system is a control framework of the human-
involved manufacturing system. Part of the problem of con-
sidering humans performing critical roles is that the human
behaviors are nondeterministic and the human can play sev-
eral roles in terms of beneficial and detrimental actions.
One way to explain these human behaviors is based on
the concept of affordance [3] and prospective controls [4].
The Affordance Theory has later been adopted in various
domains including human-computer interaction, interaction
design, and user interface designs [e.g., 5-8, 52-62]. Using
the Affordance Theory, an Affordance-based inite State
Automata (AFSA) modcling formalism is developed for the
manufacturing control by directly relating the transition rules

with the juxtaposition process [9]. Since then, various
researchers have applied the AFSA model in various
domains due (o its ability to describe the control abil-
ity and the interaction between human and the system
environments [10]-[15], [535], {56].

In the conlext of road traffic analysis, driver’s behavior
simulations are one of the most important challenges in the
context of building autonomous vehicles using public roads,
where there is a nced of exact mapping and prediction of the
human behavior. Although the AFSA model was developed,
the model has not been extended through agent-based simu-
lation and real experiments in the context of highway-driving
system [10], [11]. On the contrary, existing agent-based sim-
ulation modeis for driving applications lack a perspective of
AFSA in terms of sensing its environment [63]-{69]. Thus,
we propose the agent-based AFSA model, which well reflects
the characteristics of people’s behavior on the roadway on
the basis for modeling human-machine behavior. Using the
Highway-Lane-Driver System (HLDS) previously studied by
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otherresearchers {16}, {171, [44], the mathematical definition
of the HLDS problem is modeled with the AFSA model and
the transition diagrams are created on the basis of real tests
in our study. The main ebjcctive is to study the obtained
experimenls’ statistical data of a given runway segment using
the AFSA model to validate the model correctness against
the real driving, We note that this study is expected to
offer insights toward a design of control framework for not
only human-driver behavior modeiing, but alsc a control of
autonomous/self-driving car, in which control systems need
to detect surroundings, interpret sensory information, distin-
guish between differcnt cars, and plan a path on the road to
the desired location [59], [62], [64], [66], {67].

The remaining sections of this paper are organized
as follows. We overview the pertinent literature in
Scction 2 and discuss the AFSA framework in Section 3,
Next, Sections 4 and 5 provide the highway driving prob-
lem formulated using the AFSA model and an agent-based
modeling, respectively, Then, we provide results and discus-
sion in Section 6. Finally, Section 7 presents our research
conclusions.

i, LETERATURE REVIEW

The study of Finite State Automata (FSA) has been
widespread as a lool for modeling control of complex
systems [9], [23]. For example, Smith et @l suggested a
formal model of a control scheme for manufacturing sys-
tems by using comununicating FSA, called Message-based
Part State Graph (MPSG) [24]. The authors implemented
the model in a shop floor manufacturing problem with-
out any human involvement. Shin er «l. [2] Turther con-
sidered human activities in the FSA. Even though their
work describes human activitics in manufacturing systems,
the study considers the human as a system component with-
out any physical/environmental constraints. With regard to
the Affordance Theory, Gibson [3] initially defined affor-
dances as action pessibilities in the environment, objectively
measureable and independent of the individual’s ability to
recognize them. The affordance is thus a relation between
an environment and a subject that, through collection stim-
uli, affords the opportunity for that subject to perform an
action [3], [4], [36], [37], [42]. Since its development, affor-
dance plays a key role in several studies in not only an
engineering design context [52]-[54], but also in a highway
driving {16], [17], [59]-[62]. Recent studies in the control
design of autonomous driving also implement alfordance as
a key element [58}, [61].

One of an cxtended concept from FSA is the Discrete
Evcnt System Specification (DEVS), which is a hierarchi-
cal formalism for modeling control of general systems with
discrete events, The extension in DEVS provides a hierar-
chical concept to define both system behavior and system
structurc [20], [43]. The DEVS formalism thus is a basis
for the AFSA model, in which the FSA and the affordance
capture an outer system level and the inner behavior model,
respectively, Kim ef al [1], [9] provided in their study a
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link between System Theory of FSA and Affordance Theory
suggesting that the ESA corresponds to the ecological sense
of affordances. In particular, the authors developed a formal
modcling framework called the AFSA model and illustrated
a human-machine cooperative manufacturing system in their
study. Recent researchers have applied the AFSA model in
various problems {12]-[15]. Ko et al. [12] proposed a formal
representation of design knowledge for customized design
for additive manufacturing (e.g., [45]) using FESA and the
concept of affordance to identify the interrelations between
AM constraints, user’s desire and capabilities, and product’s
customized features. Oh et al. [13] presented a hybrid dis-
crete event system and agent-based model to simulate the
performance of a human operator in a human-machine coop-
erative environment. The authors integrated an affordance-
based MPSG control model into a simulation modet of human
and machine behaviors to aid 2 manufacturing process plan
and control under dynamic situations, Ryu et al. [15] pre-
sented the modified AFSA model with considering memory
decay function of human operators for training and control of
safety-critical human-machine systems. Ko et al. [53], [56]
proposed a design method and architecture for product-
service system based on affordance and FSA. The authors
illustrated an automotive system and additive manufacturing
in their studies.

Another line of research involves agent-based simulation
modeling for a bighway driving [63]-[67] and an integrated
affordance and agent-based simulation modeling [14], [57],
[58], {68], [69]. Joo ef al. [14] proposed a simulation model
of affordance-based human behaviors for emergency evac-
nation to mimic perception-based dynamic human actions
interacting with emergent environmental changes, such as
fire in a warehouse-fire-evacuation case study, The authors
argue that existing studies lack a perspective on both the
ecological concept of affordance and a formal system that
enables human perceptions of dynamic environmental ele-
ments. Busogi er al. [57] also integrated affordance in the
agent-based simulation for evacuation problem, The authors
used a cost-based affordance in an agent model to trigger
an evacuee movement from a building. Kliigl [S8] devel-
oped an approach to capture agent-environment interac-
tions based on the affordance concept and illustrated their
method in a post-carthquake event. Recently, researchers
have proposed an integrated affordance and agent-based
modeling for autonomous driving context, in which an
autonomous or driverless car is capable of sensing ils cnvi-
ronment and detecting surrounding information [68], [69].

Specifically, in the context of driver models, several other
researchers have proposed different methods in terms of theo-
retical and modeling ramework not directly related to aninte-
grated agent-based AFSA model to understand human driver
behavior in the literature [27]-[35], [46]-(51}, [59]-[69].
Macadam [49] provided a systematic review for issues related
to human driver modeling. The author suggested that as
the vehicle and driver constitute a complex feedback sys-
tem, the idea of treating the driver and vehicle together as

VOLUME 6, 2018
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4 combined ‘man-machine’ system is an important aspect.
Yang and Koutsopoules [27] initially classified between the
Mandatory Lane Change (MLC) and the Discretionary Lane
Change (DLC) concepts. Later, Ahmed [28] proposed the
acceleration and lane-changing models in the study. Accord-
ing to the author, the MLC is performed when the driver must
leave the carrent lane, while the DLC is performed to improve
driving conditions. Salvucci [29] proposed the mind {racking
system with a case study in lane changing detection. Later,
Salvucci [30] and Salvucei et al. [31] developed different
models to understand driver behavior in changing lane and
acceleration. In the same year, Toledo ef al. [32] suggested
the model that integrates acceleration, lane changing, and
gap acceptance models based on the concepts of short-term
goal and short-term plan. A microscopic traffic simulator was
used to validate and compare their model against an inde-
pendently developed model [33]-[35]. Sun and Elefteriadou
[46] studied the behavior of drivers using focus group and
use results in micro simulators, Four types of drivers were
identified in their study; drivers who always want to keep
their current lane and arc risk averse; drivers who prefer
a better position under low risk; drivers who aim to get a
better position with increasing risk; and drivers who always
try to get a better position. Sadigh et af. [47] used different
approach to model stochastic nature of driver behavior by
using convex Markov chains and showed that their model
suits well the driving pattern with the presence of threats.
In the same ycar, Mars et al. [48] analyzed the driver-vehicle
system by varying degrees of haptic shared control. Accord-
ing to the authors, the shared control is more beneficial to the
drivers in low visibility conditions. Markkula [50] has further
proposed that current driver models in the literature need to be
validated on relevant critical situations, such as the near-crash
situation.

Given that we intend to fill the void of research gaps for
highway-driving sfudies that implement the AESA as well
as the agent-based modeling, we summarize research gaps
in Table 1, We note that this literature review is not meant
o cover all ranges of countless models for driving behav-
iors, but to represent existing rescarch gaps related to mod-
eling aspects and how our study contributes to researchers
interested in modeling and thecory of AFSA as well as
practitioners desiring to design a controlling scheme of
driving model. This sindy is also expected to benefit a
designed conirol for autonomous/self-driving car, in which
a control system needs Lo be capable of sensing and nav-
igating its environment, to distinguish between different
cars on the road, to detect surrounding information, and
to plan a path on the road to the desired location, which
are essential elements for ‘affordance-effectivity’ pair of
AFSA [59], [62].

In particular, we highlight gaps in the existing research and
discuss our contributions as follows:

« A control framework that integrates an agent based

model and AFSA in a highway driving system has
not been studied and developed in the literature.

VOLUME 6, 2018

Thus, we offer a combined theoretical-practical model
in this research.

« Although existing models consider a perspective on the |
affordance and/or FSA, they are mainly used in an
engineering design context and have not been inves-
tigated with real data especially for highway driving
applications.

» An integrated agent-based simulation with AFSA pro-
posed in this study is intended to provide an understand-
ing of a control framework for driver behavior and for
autonemous/seli-driving car applications.

« The statistical and correlation analysis in our study sug-
gests an improvement toward the theoretical aspect of
AFSA model.

il AFFORDANCE-BASED FEA MODELING

A, FEA-BASED MODEL

The FSA is a mathematical model of computation conceived
as an abstract machine that can be one of a finite number of
states. The machine will be only one state at a time. Then,
it can change from one state to another when initiated by
a triggering event or condition called a transition. Finally,
the machine will go to accepting or final states represented
by double circles {23], [24]. A commonly used FSA can
be defined in o mathematical form using a quintuple (1) as
follows [23], [24].

MPPA =< %" 0, 40,6, F > (1)

3" :a set of input alphabets (a finite non-empty set of
symbols);

o Qea set of finite and non-empty states;

e g, ran initial state such that g, € (;

« & a state transition function, such that § : Q%Y —» O

and

» Fraser of final states, such that F € ),

Considering an example of a ‘person-climbing-stairs’ sys-
tein, a transition from a lower level (i.e., an initial state)
to an upper level (i.e., a final state) can occur immediately
following the action ‘climb stairs’, which is an input symbaol
to a current state ‘lower level’. In spite of the FSA success in
automated systems design, the model falls short of adequately
addressing human aspects. In particular, it only represents the
physical aspects of systems behavior without considering the
resource availability, a person’s attention, and capability to
accomplish a specific action [9].

B, THEQRY OF AFFORDANCE

The terms affordance and effectivity represent an environ-
mental property that guides an action opportunity to a human
being and the action capability of humans in a certain envi-
ronment {3]. This notion of affordance is conjecturcd for
& prospective control, in which formal definition of affor-
dance using a juxtaposition function can be defined [4]. Let
Wpg = i(Xp, Z;) be a function that is composed of an
animal (Z) and an environmental object (X); furthcrmore,
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TABLE 5. Literature based on modeling context and highway driving applications.

Authors Year | Modcling context Application

| Affordance  Finite State  Agent-based : Highway Others

3 Automata model . driving
Shin etal, [2] 2006 x : Shap floor mfg,
Keetal {12} 2005 Ix X : Additive mig.
Jooctal, [14] 2003 | % x i Evacuation
Thiryvengada and Rothrock [16] 2007 @ % D%
Thiruvengada et al. [17)] 2007 ¢ ox %
Smith et al. §23] 2003 * Shaop floor mfg,
Thiruvengada et al, [26] 2007 | % x Eng. design
Maier and Fadel {52] 2009 ¢ x Eng. design
Ciavola et al. [53] 2015 % Eng. design
Ciavola and Gershenson [54] 2016 x Eng. design
Koctal. [55) 2016 1 x X Eng. design
Koct al, [56] 2015 x X ; Additive mfg,
Busogi et al. [57} 20017 % ® ; Bvacuation
Kliigl [58] 2014 x ; Evacuation
Chen et al. [59] 2015 § % | x (Self driving)
Maorice et al. {60] 2015 ¢ % Do
Vanderhaegen [61] W16 x [ x
Krome ef #l. [62] 2017 ¢ % [x (Self driving)
Neuyen et al, [63] 2014 | % [ x
Fagnant and Kockelman [64] 2014 X : % (Self driving)
Razzan and Kliigl [65] 2014 b DX
Miadenovic and Abbas [66] 2014 X ¢ x (Self driving)
Miadenovic and Abbas [67] 2013 x ¢ % (Self driving)
Ksonlini ct al, [68] 2613 1% % RS
Ksontini et al. [69] 2615 x X Do
This stugdy ‘ P % ® x D%

let p and ¢ be properties of X and Z, respectively, Then,
p refers to an affordance of X and g is the effectivity of Z
if and only if there exists a third propetty r such that

o Wiy = i(Xp, Z;) possesses r;

o Wy = j(X,, Z,) possesses neither p nor q; and

« Neither X nor Z possesses r, where r is the third

properiy.

In the case of a ‘person-climbing-stairs’ system (W) dis-
cussed earlier, a person (Z) can walk (¢), stair (X) can support
something (p), and this combination yields climbing prop-
erty (r). These definitions of affordance, effectivity, and the
juxtaposition function are mapped to the stale transitions in
the FSA and provide a foundation to incerporate the concept
of affordance into system modeling and control.

. AFFORDANCE-BASEDR FSA IN HUMAN-MACHINE
SNTERACTION

The AFSA medel incorporates dynamic and perceivable
properties of affordance into a formal control model in such
a manner that a human operator has a set of possible actions
and can lake an action based on perceived system conditions
(affordances) and his or her capabilities (effectivities) [9].
Mathematically, the AFSA is defined with a six-tuple FSA
called M (combined model), which describes the rules
of state transitions, and a 12-tuple FSA called M“*" (atomic
model), which contains both human and environmental com-
ponents as follows ({2) and (3)).

Mr:amb S Z) s, SO,M“’”"', Soxts F > {2)
MO = < (X, 7, W), (P, O, PAY, Pr, j, 7, 10, Sints s >
3)

2186

s > ca set of transitions among system states;

o Sta set of system states;

o Sy can initiaf (starting) state in the system;

o 8oy ca system state {external) transition function, 8y
SxY =8

o Fraset of final (halting) states;

o Myom a sub system (atomic model) containing both
human and environmental perception stafes;

« X ran environment sysfem;

o Z:alwman (animal} in the enviromment system;

« Wean Animal-Environment System (AES);

« P a set of affordances, P = {p1,p2, ..
positive inleger;

o (O:a set of effectivities, 0 = {qi,q2,...
positive integer;

o PAla set of possible actions, PA = {pay, paz, ...
ris a positive integer;

« Pr:a perceptual predicate function for higher order
properties, Pr: X — P, Pr:Z — Q, Pr: W — PA,
P, g, and pa is a property of X, Z, and FA, respectively;

o jra fuxtaposition function I: X x Z — W;

« 7 ca possible action generation function, w 1 P x () x
C — PA; C is a set of physical preconditions for
realization of an action in AES;

« fa:a target action; taePA and tae 3,

o Opy 2d tinie advance (internal) transition fimction, 8y,
{P, Q) x timg — {P, Q)

oty ca fime advance function.

The internal transition (8z,) connects two sub-states that

contain a specific duality of affordance (p,,) and effectiv-
ity (g,) propertics. These properties change over time (£}

cy P, HES o
Jqnl RIS a

,Par'}1
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and the juxtaposition function (j} generates a set of possible
human actions { PA). Then, the system transition (§e) is
made available by the human taking the action { fa) if and
only if & physical condition {C} is met within the same time
and space,

W, HIGHWAY-LANE-DRIVER SYSTEM (HLDS)

A FHLDS PROBLEM DESCRIPTION

The HLDS problem and an experiment with real test by
Thiruvengada and Rothrock [16] were adapted in this study.
This problem contains three highway lanes, two drivers, and
an exit as illustrated in Fig, 1(a). Two drivers share the
highway lanes and take actions to exit the HLDS. One of the
critical considerations for a driving experiment is safety of
drivers. Thus, key assumptions for the HLDS problem were
defined following the previous study as follows [1], [9], [44].

) -

L3ILANES

o Drive o L Drivetpi2 Dielghl  diveto Ll v w L3
ﬂl\\/“‘ \\‘// £ D ,_Q
Sl ™, s 8yl
Drrivyr i i Driswr s in Dzn sin )
the Lane | the Lane 2 e loas 3
. ~ '_

S
Brive o Lt Dri\tln L2

P

Olhcmls\.. (
F: ror state = Dthum rise
| b e

Bivew LU Driveto L} Divc ol Drivem L} Drive w13
) under ¢, wider o tuder oy undee ¢ o ¢
. e

Txi

E2an o) @
« Y 4
e NTDL NG D
Trive v LI ’ Driveta L2
\ ks < ,«,-/—‘t::‘ Wi ¢ / (
Uiherwize — / T
Bt \\ £ rmr e T Otheewise
Gihisbing W

FIGURE 1. {a) HLDS problem, (b) FSA model for HLDS, {c} AFSA model for
HLDS (adapted from [1}, [16]).

» Multiple drivers can share the HLDS.

« A lane (L} provides the affordance “L; is drivable” to
a driver (d;) if and only if the lane is empty for at least
three-car length {i.e., drivers arc instructed to use this
decision criteria for moving into a lane) at any given time
accounting for safety factor for moving into lane without
a crash.

» The drivers posscss the capability to perceive the affor-
dances offcred by the environment (other cars and high-
way lanes) based on their visual information and view
angle through a front, a rear view mirror, and side
mirrors,

» The drivers drive with speed instructed in each scenario
and maintain their velocity throughout their driving,

VOLUME 6, 2018

B, AFSA REPRESENTATION FOR THE HEDS

Kim e¢f al. [1] illustrate the AFSA model using a set of
nodes (discrete states of the system) and arcs (the transitions
between states), where a set of potential properties {affor-
dances and effectivities) are defined by a set of transitions
in each state for the HLDS problem, Whereas the sel of
nodes or states (§) is lane 1, lane 2, lane 3, exit (i.e., goal
state), and error state (i.e., absorbing state); the set of final
(halting) states (F') includes exit and error state. The set
of final states in the model implies that the model will be
terminated if either ‘exit’ or ‘error state’ is reached (Fig, 1(b)).
To make a fransition to the next state, the human driver
considers appropriate perceptual conditions of affordance and
effectivity to take a possible action, The perceptual infor-
mation is represented by functions of visually perceivable
clements, such as dimension and location within a specific
titne and space range. In particular, the sub-state is defined
with system alfordances (i.e., perceived drive-ability of the
lane 1, 2, 3, and exit) and driver effectivities (i.e., driver’s
perceived capability to make a lane change to or keep going
on the lane 1, 2, 3, and exit), Next, the physical pre-conditions
can be defined as ¢;, where i = {1, 2, 3, 4} to represent the
physical requirements for realization of a specific action that
the L; is empty for at least three times the car length and a
driver does not pass by the exit. Finally, the set of possible
actions ( PA) can be included (Fig. 1{c)). Mathematically,
the HLDS probiem can be modeled with the AFSA model
as follows ((4) and (5)).

M = < NS s, M By, F )
MU — (X 7, WP, O, PAY, Proj, mw, ta, Siy, i >
3
o > la set of transitions among system states, 3 = PA;
o S = {sg = lane 1,51 = lane 2,59 = lane 3,53 =

exitlane, s4 = absorbingstate(errorstate)};

o Sap IS XY > S,

o F={s3, 5}

» X:confederate driver and highway lanes;

o Zisubject driver;

o W.HLDS;

o P={p =drive — on/change — to — lane — 1 — able,

P2 = drive-onfchange-to-lane-2-able,
p3 = drive-on/change-fo-lane-3-able,
P4 = exii-the-highway-able};

v« O = {q1 = drive on/change 1o lane I, g2 = drive
on/change o lane 2, g3 = drive on/change to lane 3,
q4 = exit the highway);

o C = {c1 = L1 is empty for at least three times the car
length and a driver does not pass by the exit, ¢p = L2 is
emply for ar least three times the car length and a driver
does not pass by the exit, ca = L3 is empty for at least
three tinies the car length and a driver does not pass by
the exit, cq = the exit is empty and a driver does not pass
by the exit);

s JIAXZ> W
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e PriX— P PrZ— Q Pr: W— PA;

« TPxQxC— PA;

o fa:atarget action; ta € PAandtae )

. é‘l'nr-' 5fm‘ : {P: Q} X tint —> {Pv Q}’

o Il fime acdvance function,

v PA = [drive to/change to lane 1 iff ¢y, drive to/change
to leme 1 iff eo, drive to/change to lane 3 ff 3, exit the
highway iff c4}.

Handling
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FIGURE 2. PTI's real driving track and experimental setup (adapted
from [44]).

. BESIGNED EXPERIMENT

The experiment conducted by Thiruvengada and Rothrock
with two drivers, three lanes, and a length of 80 blocks with
a block of 4.5 meters is adapted in this paper [16], [17], [44].
We use the real test results obtained from the authors to
test the AFSA modeled in the agent-based simulation envi-
ronment. A designed experiment is briefly discussed in this
section due to space limit and we encourage interested readers
to check [16], [44]. Fig. 2 adapted from 44 shows a layout
of the PTT driving track with real test setup, We note that
an cxit (lanc 1) in [44] is replaced with an exit (lane 3) in
our study to aid comprchension without loss of generality.
Inparticular, four test drivers were randomty grouped into two
pairs, in which one driver was randomly assigned the role of
driver 1 {i.e., subject driver (SD}) and the other driver was
assigned the role of driver 2 {i.e., confederate driver {CD3).
Bach of the drivers was male aging between 40-65 years and
possessed a valid commercial driver’s license at the time of
the experiment with at least 15 years of driving experience.
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TABLE 2. A designed experiment with three factors.

Factors Levels
Starting lane position Lane 1;
Lane 2
Starting block position Block 1;
Block 15
Relative velocity (V) Vap (40 mph) > Ve (20 mph);

Vany (20 mph} = Vp {20 mph);
Vs]) (20 E]'l]]h) < V(_j[) {40 mph),

TABLE 3. A selected 12 scenarios used in the experiment.

# | Relative starting position of drivers | Relative
‘ i velocity
Subject driver Confedernte driver |
Lane Block Lane { Block :
position | position position  { position !
1 {Lane2z | Blockl | Lane2 | Block 15 | Vs > Ve
2 i Lanc2 : Blockl | Tanet ! Block 15 | Vg >V
3 | Lanc2 | Block15 | Lane! ! Block 15 | Vg » Ve
4 | Lanet Block 1 | LaneZ Block 15 ! Vi > Voo
5 ] Lane ! | Block | Planet | Block 15 | Ve > Vg
6 | Lanel | Blockl5 : Lane2 | Block 15 | Vg » Ve
7 ' Lanc 2 ! Block1 | Lane2 ¢ Block 15 3 Vsp =Ven
8 |Lanc? | Blockl | Lanet | Block | ! Vi =V
9 | Lene2 | Blockl ! Lumet | Block15 | Vg =V
10 § Lanct | Blockl | Lane2 [ Blockl ; Vs =Vep
11 | Lanct | Blockl | Tane2 | Block IS | Vi =Vep
12 i Tanel | Blockl 1§ Lanel | Block15 | Vi =V

The experiment was also conducted during daytime hetween
2- 4:30 pm eastern standard time to ensure ample daylight
while driving. During the experiment, the CD was instructed
to follow a pre-scripted path, whereas the SD’s behavior
was studied, The CD was instructed that the lane can be
changed after passing a visual cue {orange come) on the
driving track. Both drivers received specific instructions prior
to beginning each trial about their starting location and the
target velocity to maintain [44]. We summarize the designed
experiment in Table 2 with three factors based on relative
velocities (e.g., whether SD was driving faster than CD),
starting lane positions (e.g., whether CD> was vertically closer
to exit lane), and starting block positions {e.g., whether CD
was horizontally closer to exit lane) to observe and ana-
lyze driver behavior. Then, bascd on all possible scenarios,
a subset of 12 scenarios were chosen, in which two levels
of relative velocity (VSD > VCD or VSD = VCD) were
used [44] to properly observe the SI)’s interaction with CD
as shown in Table 3. In the first pair (i.e., experiment 1),
the driver who was assigned the role of SD committed driv-
ing from scenatios 1 to 12 with the Ist and 2nd round,
Next, in the second pair (1.e., experiment 2), data were col-
lected from the other S, who committed the same driving
scenarios with the Ist and 2nd rounds. Thus, there are a
total of 48 experimental trials (i.e., with 12 different scenar-
ios, two replications between drivers, and two replications
within drivers). Experiments 1 and 2 contain trials 1-24 and
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trials 25-48, respectively. To (rack the positions of drivers,
a vehicle was equipped with the Pifferential Global Posi-
tioning System (DGPS) unif, in which the primary reference
point is the location of the DGPS’s base station unit and the
secondary reference point is the point at the beginning of
the starting lanc’s first block (Fig. 2). Both of these DGPS
unils provide positional information about the respective test
vehicles in terms of latitude, longitude and altitude, which
is then transformed into x-y Cartesian coordinate system
{with reference to the secondary reference point) [See 44].
Thus, the experimental lane position data for each driver at
a particular time and space can be obtained. Given the real
test outputs from the 48 trials, we {hen compare with outputs
from the agent-based AFSA modeling framework (Fig. 3).
The hypothesis testing is conducted to see the impact of
agent preference and affordance based model (HO: There
exists no difference in driving behavior between using the
proposed agent-based AFSA simudation framework and the
actual driving experiment), which is Turther analyzed using
comparative and correlation study. The horizontal arrows
in Fig. 3 suggest that the agent-based model uses experi-
mental seftings {e.g., number of drivers, fane positions, etc.)
from a previous study as an input set for a modeling basis.
In addition, the results from the simulated data are compared
with the actual driving as a proof of modeling concept. This
recursive process ensures the verification and validation of
the simulation model.

Actial driving test data . Agent-hased AFSA data
- ; Modeling basis ey

12 scenatios. HDLS drving simulation

1 reptications. Proof of ;100,000 repsieach scenario: |

A s . MV : . : Mean si i i i
{48 experimental driving Cmodeling ¢ {NMean simulated driving |
it} FIRT path)

f

=
Comparative and corrclation analyses
;¢ Null (1I0): There exists no difference in predicting driving behavior
using agesl-based AFSA simmlation fiamework
v Alternative (F1): There exist differences in predicting driving
behavior using agent-hased AFSA simulation framework

+ Transitfon diagram naelysis: a companison between empirical and
simulated data and 93% CI
+  Statistical analysis using ANOVA: a correlation study for testing the

itfluence of driving preference with varying physical pre-condilion.

FIGURE 3. Structure of experimental design.

Y. AGERY-BASED SIMULATION OF AFSA-BASED

HLDS PRODLER

A. HLDS SIMULATION MODEL DESCRIPTION

Simulation model and verfication/validation process are
cssential [18]-{22]. Sargent [22] suggested that validation
techniques can be used either subjectively (e.g., exploring
model behavior) or objectively (e.g., comparing using sta-
tistical tests and procedures). In this study, we simulate the
AFSA representation for the HLDS problem using the agent-
based simulaticn approach. The transition diagrams with the
lane position data are obtained from the simulation model
and are compared with the real data obtained from the actual
driving experimental trials. Fig. 4 illustrates the agent-based

VGLUME 6, 2018

ey Subjeet Driver Conlederate Driver

Hlaaxt

Prive it the L |

Limive in the Lane 3
Prive jthe L 3

Tmmm e pabilizhcs DSM!: @ s e i Tistasithans

(ntder attoaduice & effectivityy

@ St

BIrive as fasinicied

Leged

FIGURE 4, Agent-based modeling framework for the HLDS: (a) state
charts for a subject driver (5D} and a confederate driver (CB),

{b} a screenshot before a visual cue, and (¢} a screenshot after a
visual cue.

strulation modeling for the HLDS using a software pack-
age called AnyLogic, which is capable of modeling agent-
based, system-dynamics, and discrete-event simulation {38].
Fig. 4(a} presents the rule-based state charts for the SD and
the CD. While the CD considered as a part of an environment
was instructed to follow a pre-scripted path with a deter-
ministic route, the SD makes a decision to drive to different
lanes or to go sfraight in the same lane based on the SD’s
preconditions (C) representing driver’s decision crileria until
the SI} in the simulation reaches the exit lane. This allows
us to observe and compare the simulation model’s behavior
against the real driving experiment.

8. MODEL VERIFICATION

One of the most important, difficult tasks facing a model
developer is the verification and validation process of the
model, Researchers suggest that this process should be per-
formed during a model development and typically requires
an experiment with the real system [19]. In particular,
a simplified version of the madcling process includes three
key components: the problem entity, the conceptual model,
and the computerized model [22], The problem entity repre-
sents the proposed system of interest (i.e., HLDS), the con-
ceptial model is a model representing the problem entity
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(ie., the AFSA mathematical model), and the computer-
ized model is a computer representation of the conceptual
model (i.e., the agent-based simulation medel). This model-
ing process is iterative and continues until a consensus among
model developers, stakeholders, and decision makers is
reached [10].

Fig. 4(b) and Fig. 4(c) illustrate a screenshot of the simu-
lated HLDS problem after the model is run reasonably long
until the agent driver reaches a visual cue. Whereas the SD
decides to continue driving in lane 2 without any lane chang-
ing, the CD is instructed to change from lane 2 to lane 3 after
passing a visual cue. In order to verify the model, experts’
comments for the AFSA and simulation model representing
the HLDS problem were used, which helped us to improve
the model. Next, the operational validation is performed with
a comparative study with actual test driving output. Given
48 cxperimental outputs based on actual lane-position data
and observations of lane changing for each driver at a particu-
lar fime and space from the driving scenarios, the agent-based
AFSA simulation outputs are similarly reported in terms of a
transition diagrani representing the average lane position data
in time-space dimension to aid a comparative study. We also
perform a madel correlation analysis to see the relationship
between varied physical preconditions and the AFSA-based
simulation model.

TABLE 4, Notation for the transition diagram.

Notation Description
Starting position (Block 7, Lane /) of Driver 1{Subject
Driver) in each scenavio, where i = 1,...,80, and j =

1,23

Starting positien {Block /, Lane ) of Priver 2
(Confederate Diriver) in each scenario, where i =
1,....80,and j= 1,23

Current position from an empirical output of Driver |
or Driver 2 at time ¢

Current position on average {rom the agent-based
simulation niodel of Driver 1 at time ¢

¢ 0

Possible transitions from the Alfordance-based FSA
maodel (p* ¢*) under initial pre-conditions {C} or
adjusted pre-conditions {C'*) at timie /

v ovn wm DBiock-land diagram, where the v-axis denotes block
wul’_]_{_{_: I ]“ numbers and the y-axis denotes lane numbers

The exit lane positioned at lane | after passing 8¢
blocks of 360 meters

€. TRANSITION BIAGRAM ANALYSIS

Given notations in Table 4, a transition diagram is gener-
ated for the outputs obtained from actual driving test and
agent-based AFSA simulation for 48 experimental trials,
For each trial, four sub-transition diagrams are next proposed
to aid a comparative study (transition diagrams (a)-(d)}. These
sub-transition diagrams allow us to investigate observable
behavior of the model and compare between simulated results
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and empirical culputs at the particular time-space dimension.
Each sub-transition diagram (a)-(d) is discussed below.

1) Sub-Transition Diagram (a): The plotted CD's aciual
driving path (Environment)

~ This diagram (a) shows CD's positions at the particular
time-space dimension. The CD acts as a part of environment
following the pre-scripted path from the beginning to the end
of the exit lane and is instructed to maintain the pre-specified
speed. He or she is instructed that the lane can be changed
after passing a visual cue,

2) Sub-Transition Diagram (b): The shaded output of
agent-based AFSA simulation model for SD alone

- This diagram represents the simulation output of one
agent alone (SD) without any intervention of CD. That is,
the shaded, grey area shows possible transitions (i.e., p* and
q* from the AFSA model) generated from using the agent-
based simulation approach under initial pre-conditions {C)
for 100,000 replications.

3) Sub-Transition Diagram (c): The shaded output of
agent-based AFSA model for SD interacting with €D

{SD's actual driving path vs. mean SD simulated path)

- This diagram shows the simulation outputs and actual lane
position data of the SD (driver 1), given that there is an
interaction between the two drivers and that CD acts as a part
of the environment in the AES system. First, the simulation
results of the SD under a set of physical pre-conditions (C)
are shown using the shaded output area (possible transitions).
Then, the simulated path of SD calculated as the mean path
is plotted with a fixed interval in the diagram. The SD’s
positions from the actual driving data at the particular time-
space dimension are also plotted from the beginning to the
end of the exit lane. It is clear that the possible transitions
from the model of SD without any intervention of CD (sub-
transition diagram (b)) are affected by the existence of CD.
In addition, a comparative study can be done between Lhe
SD’s actual driving path and mean simulated path.

4y Sub-Transition Diagram (d): The shaded ouiput of
agent-based AFSA model for 5D interacting with CD

(5P's actual driving path vs. mean SD simulated

path under C¥)

- This diagram shows a particular result from the corre-
lation study of the AESA model, where a set of physical
preconditions called adjusted physical pre-conditions (C*)
are varied, These physical pre-conditions are treated as the
driver’s preference on the lane gap criterion of the driver’s
car with respect Lo the one in front of the driver, which can be
varied in the AFSA model. Given an avlonomous/self-driving
environment, varying physical preconditions also implies set-
ting parameters to defect different cars in a driving path.
We illustrate the casc of relaxing from the three-car length (C)
{o one-car length (C*) to illustrate a case of conservative and
aggressive driver, respectively. That is, the shaded area (pos-
sible transitiong) shows the simulation results of the SD under
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TARLE 5. An illustrafive case of scenario 12, exp. 1 trial 2 {(Shaded areas show aggregated driving paths at 95% CI).

Block Bl B6 BIl BI7 B23 B29 B34 B40 B46 B57 B63 B69 RBT4 RS0
025 025 025 025 025 021 0016 012 008 004 O 0 0 0 o
Lanel p3g 038 038 038 038 031.°024 0.8 0020067 0 0 0 0 0
025 025 025 025 025 023. 020 018 014 30050 003 0 0
013 013 013 013 013 004 016 018 007 50010060 0 0
Lame2 ¢ o 0 0 0 006 012 018 02000210023 016 008, 0 0
@ 0 0 0 0 004 008 012 014 01 017 045 - 003 013
0 0 0 0 0 002 004 006 0.09 LS008 022025 025
Lane 3 0 9 0 0 0 0 9 0 004 020 028 038 038
0 0 0 o 0 o6 0 0 003 0 013 019 025 025
Sum 100 1.00 100 £.00 1.00 1.00 1,00 100 1.00 100 100 1.00 1.00 108 1.00

a set of adjusted physical pre-conditions (C*). The mean
path of the simulation results at a fixed interval is compared
with the path obtained from the actual driving path of the
SD based on C*,

VI RESULTS ARND DISCUSSION

The agent-based AFSA simulation model developed using
AnyLogic software was run for 48 experimental trials on a
PC with an Intel (R) Core (TM) i7 @3.50 GHz and 32.0 GB
of RAM. Each run is terminated when the SD reaches the
final state. Initially, the number of total run is set high enough
to avoid any bias in the statistical inference that could affect
the results. In particular, the number of 100,000 replications
was run with reported computational time of approximately
10 seconds, The initial condition of each run for SD and
CD follows a setup of relative position and velocity based
on |2 scenarios. Next, we compute the mean simulated path
from shaded output of simulation model at 95% confidence
interval (CI) for all the 48 experimental trials. When the
original physical pre-conditions (C) with three-car length are
used, the mean simulated paths from the simulation model
appear to coincide and fit well with the actval driving data
of SD’s moving paths in the space and time dimensicn for
94% of all the experimental trials (45 out of 48 trials).
However, the less of the wials (scenarios 4 {experiment [,
trial 17) and 12 (experiment 1, trials 2 and 15}) show reject-
ing HO with statistically significant difference at 95% CL
Compating between two pairs of drivers, while the experi-
ment 2 shows coincide data, significant differences are found
in experiment 1 (Recall that different pairs of drivers with
different SD are termed experiments 1 and 2). This result
implies that different drivers/agents may bemore or less con-
servative when driving and a set of physical pre-conditions
can be modeled to reflect such behavior, A design of control
framework to simulate an autonomous driving car could also
exploit such varying parameter of physical pre-conditions to
reflect a driver (or a passenger in a driverless car) preference.
Table 5 illustrates the simulation results for the scenario 12
(experiment 1, trial 2) visualized as shaded arcas. The shaded
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output area is calculated based on the probabilities of driving
paths of agent-based AFSA modeling of SD at 95% CL

We illustrate the transition diagrams associated with sce-
natio 12 (experimment 1, trial 2), which present significant
different paths when the original physical pre-conditions (C)
with three-car length arc used (Fig. 5). When comparing the
sub-transition diagrams (b) and (¢), it is clear that the shaded
area of S1) alone is alfected by the existence of CD. Further,
while the mean simulated path of SD at the 30™ block sug-
gests that the driver should go straight, the actual driving data
show that the driver decides to change from lane 3 to lane 2,
However, when we relax the set of physical pre-conditions
from the three-car length (C) to one-car length (C*) in the
sub-transition diagram (d), the mean simulated path of the SD
at around the 30" block suggests that the SD should change
from {ane 3 to lane 2, which coincides with SD’s decision in
the actual path. As the most critical parts of a driver model
can be validated by analyzing the most important observable
dala [31], we further discuss three cobservations related to
the human error, the lane change decision, and the model’s
physical pre-conditions,

A, HUMAN ERRORS OF COMIGISSION AND OMISSION
One possible reason can be attributed to the driver (human)
error. By definition, human error implies that something has
been done that is not intended by the human and is deviated
from the goal {39]. In this situation, the human errors called
errors of commission and omission can be used to enlighten
driver behavior {40], [41]. That is, SD may incorrectly per-
ceive that the empty length of a lane between longitudinal
positions of SD and CD is still more than three-car length
{i.e., error of commission}, or that SD may completely fail to
pursue a lane change manoeuvre during a close-call situation
{i.e., ercor of omission}. Although it is not always the case,
an accident may cccur if either of these errors is present.
Thus, human errors should be well incorporated in the com-
putational model of human-involved complex systems and
behavioral prediction.
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(a} CD's actual driving patl {environment}
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FIGURE 5. Transition diagram for scenario 12, exp. 1, trial 2.

B, WMLC AND DLC WITH LANE CHANGE DECISION
Significant differences in transition diagrams between sim-
ulated and actual driving are found during the lane change
decision. Typically, the lane change behavior can be classified
as either the MLC or the DLC [28]. Salvuccei ef al. [31] sug-
gested that while the MLC is performed when the driver must
leave the current lane, such as facing a lane drop, the DLC
is performed to improve driving conditions. Further, when
MLC conditions do not apply, the driver will decide whether
to perform DLC by considering two conditions: whether
current driving conditions in the same lanc are satisfactory
(e.g., based on desired speed) and, if not, whether any other
lane is better than the current lane (e.g., based on the density
of traffic).

Let’s examine Fig, 3, for example. As the actual driving
experiment was controlled in the case study, the MLC con-
ditions are not relevant (e.g., the road quality was checked
prior to an experimeat). Thus, the DLC of SD in the ‘time-
space’ dimension is investigated. At time *1¢”, the block-land
positions of the SD and CD are at (Block 27, lane 1} and
(Black 30, lane 1), respectively, Next, at time ‘t/0°, the SD
decides to continue driving in the same lane and his or her
next position is at (Block 31, lane 1), while the CD’s position
is at (Block 32, lane 1), At this time, the SD perceives that
the current lane’s conditions are not satisfactory due to the
existence of CI)'s vehicle in front of him or her and prefers
to improve the driving condition. The SD percefves that the
adjacent Iane (lane 2)'s conditions are better and decides to
change 1o lane 2. Then, at time “+77°, the SD makes the lane
change and the new position is at (Block 35, lane 2) as shown
in the figure.
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() Empiricaldriver I or 2 positions (drivingpatl)

C HUMAN BEHAVIGRAL PROPENSITIES TG
PHYSICAL PRE-CONDITIONS (C)
As shown in the AFSA framewaork, the SD will follow the set
of physical pre-conditions, where (C) = {c[, ¢z, ¢3, and ca},.
However, driver behaviors in reality are nondeterministic
and SD may be more or less conservative than what is
estimated in the model. When the assumption related to
the set of physical pre-conditions is adjusted, such that
(C*) = (¢}, 3, ¢, and c}}, a different driving path can be
simulated from the model. The sub-transition diagrams (d)
in Fig, 5 illustrate different paths when the lane gap criterion
is relaxed from the three-car length to the one-car length.
We can similarly examine SD’s behavior in the time-space
dimension using the adjusted sct of physical pre-conditions
(C*) = (¢}, 3, ¢35, and c). That is, at time ‘¢9, SD and
CD are at the block-fane positions {Block 27, lane I} and
(Block 30, lane I) respectively, The SD perceives that the
empty gap length between two vehicles (i.e., his/her car and
the CD’s car) is two-car length and he or she can choose to
continue driving in the same lane (lane 1) or make a lane
change to the adjacent [ane (lane 2), without breaking the set
of physical pre-conditions (C*). Next, at time ‘f10°, the SD
decides to continue driving in the same lane and his or her
next position is at {(Block 31, lane I), while the CD’s position
is at (Block 32, lane 1). At this time, the SD perceives that the
physical pre-condition (¢} = the empty length for at least one
car tength) will be braken and makes a lane change to lane 2.
Then, at time ‘71 1’, the SD’s position is at {Block 33, lane 2).
The above examination suggests that the set of physical pre-
conditions (C) is a system property of the AFSA model that is
dependent on characteristics of human participants. We note
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that understanding a physical pre-condition is important in
controlling viewpoint for a number of applications. For exam-
ple, driver driving on a passing lane (i.e. the lefimost lane
in the U.8.) on a multi-fane highway may also differ from
a driver driving on a regular lane (i.c. the right lane in the
U.S). Varying physical preconditions also implies a parame-
ter setup of detecting different cars in an autonomous/self-
driving environment. Mathematically, we propose that
7P x @ xC(Z)y > PAC(Z}is a proper set of physical
pre-conditions for realization of an action, dependent on Z in
the AFSA framework.

We further investigate the Analysis of Variance (ANOVA)
of the positional errors between aclual driving and simulation
data. The statistical results show that the mean error rates of
the driving paths are significantly dependent on the set of
physical pre-conditions, C(Z}, of each driver agent at 95%
CI (Table 6). The P-value for the F test statistic for both
C and Z (ie., driver) is less than 0.005 providing strong
evidence against the null hypothesis, The squared multiple
correlation (R?) also indicates that 78.21 % of the variability
in the mean simulated path can be explained by C{Z). That
is, the set of physical pre-conditions dependent on agents
is the significant factor of determining the driving patterns.
By adjusting the parameter C{Z) for the driver’s driving pref-
erence, the agent-based simulation approach for the AFSA
model provides us with an appropriate prediction of driving
patterns of drivers.

TABLE 6. ANOVA analysis for the set of physical pre-conditions (C).

Source DF  SeqSS8 AdjMS F P

Seenario 1 0.21 0.21 3.54 0.08

C 1 1.38 1.38 23.01  0.00

Person { 0.99 0.99 16.52  0.00

Error 12072 006 o
Towad 15 331

S=024 R-Sq=7821% R-Sqiddj) = 72.76%

Vi, CONCLUSIONS AND FUTURE RESEARCH

Researchers have studied the modeling and control frame-
work of human-machine system for better prediction of
the system behaviors, improved flexibility, and scamless
integration in the system operations. The development of
AFSA model is once such novel framework that incorporates
stochastic human behaviors with environmental opportunities
in a systematic way. Road traffic analysis and driver’s behav-
ior simulations are also one of the most important challenges
in the context of building autonomous vehicles using public
roads where there is a need of exact mapping and prediction
of the human behavior. In this siudy, we proposed the first
ageni-based AFSA simulation model for the affordance-
based highway driving and exit maneuver and analyzed the
results using comparative and correlation study. We mapped
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each of veal driving trajectory with agent-based AFSA sim-
ufation results for all the 48 experimental data sets. The
statistical results show that the agent-based AFS A simulation
fits well with driver’s behavior in the designed experiment for
94% of all the trials. The less of the trials with significantly
statistical difference in mapping driver’s behavior with the
model at 95% CI were then analyzed using the viewpoint of
human errors, lane change decision, and human behavioral
propensities. The ANOVA analysis was done to explore the
influences of the physical preconditions on agents that con-
stitute the existence of affordances,

The integrated affordance-based FSA with agent-based
transportation simulation and experimental design provided
in this paper are critical for practitioners and developers to
enhance the understanding in control framework of highway
driving system from the viewpoint of human-machine coop-
crative tools. The proposed research is also expected (o ben-
efit a design in smart (ransportation systems, in which both
autonomous driving and manual driving coexist. Understand-
ing interconnection between affordance-based human driving
behaviors and fully automated driving system is critical to
avoid a possible tragic event in the transportation systems.
The presented simulation {ramework can also support the
planning of the appropriate positions of the highway exits,
given human driving preferences. We expect that this research
will provide the systematic approach for the design of effi-
cient highway driving system.

Regardless, some limitations exist and future directions are
discussed next. Given that data of an actual driving case study
from a previous study is used for a comparative purpose,
an extended experimentation in highway driving domain with
more number of drivers for a larger-scale of simulation is
one critical future direction. In a real environment, people
also behave differently depending on different types of road
ways and subject to their age, gender, and so on, Thus, further
understanding of these clements is needed. In addition, it is
interesting to integrate the modeling framework of this study
at the controf level with other driving models in transportation
managerment, Finally, as the AFSA model is generic and can
effectively represent human-system interactions, the AFSA
model’s validity can be increased by further applying to other
problems that integrate humans and system operations, such
as the driver-transportation system, operator-robot coopera-
tive manufacturing systein, etc.
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